Referencias

 MOVIDIS-II

 

Bousbia-Salah, M., Bettayeb, M. and Larbi, A., 2011. A navigation aid for blind people. Journal of Intelligent & Robotic Systems, 64(3-4), pp.387-400.

Pereira, A., Nunes, N., Vieira, D., Costa, N., Fernandes, H. and Barroso, J., 2015. Blind Guide: An ultrasound sensor-based body area network for guiding blind people. Procedia Computer Science, 67, pp.403-408.

Ulrich, I. and Borenstein, J., 2001. The GuideCane-applying mobile robot technologies to assist the visually impaired. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 31(2), pp.131-136.

Hakobyan, L., Lumsden, J., O’Sullivan, D. and Bartlett, H., 2013. Mobile assistive technologies for the visually impaired. Survey of ophthalmology, 58(6), pp.513-528.

Tsirmpas, C., Rompas, A., Fokou, O. and Koutsouris, D., 2015. An indoor navigation system for visually impaired and elderly people based on Radio Frequency Identification (RFID). Information Sciences, 320, pp.288-305.

Fernandes, H., Filipe, V., Costa, P. and Barroso, J., 2014. Location based services for the blind supported by RFID technology. Procedia Computer Science, 27, pp.2-8.

D’Atri, E., Medaglia, C.M., Serbanati, A., Ceipidor, U.B., Panizzi, E. and D’Atri, A., 2007, April. A system to aid blind people in the mobility: A usability test and its results. In Systems, 2007. ICONS’07. Second International Conference on (pp. 35-35). IEEE.

Fallah, N., Apostolopoulos, I., Bekris, K. and Folmer, E., 2013. Indoor human navigation systems: A survey. Interacting with Computers, 25(1), pp.21-33.

Fischer, C., Muthukrishnan, K., Hazas, M. and Gellersen, H., 2008, September. Ultrasound-aided pedestrian dead reckoning for indoor navigation. In Proceedings of the first ACM international workshop on Mobile entity localization and tracking in GPS-less environments (pp. 31-36). ACM.

Höllerer, T., Hallaway, D., Tinna, N. and Feiner, S., 2001, August. Steps toward accommodating variable position tracking accuracy in a mobile augmented reality system. In 2nd International Workshop on Artificial Intelligence in Mobile Systems (AIMS’01) (pp. 31-37).

 

Koide, S. and Kato, M., 2005, October. 3-d human navigation system considering various transition preferences. In Systems, Man and Cybernetics, 2005 IEEE International Conference on (Vol. 1, pp. 859-864). IEEE.

Retscher, G. and Thienelt, M., 2004. NAVIO–a navigation and guidance service for pedestrians. Positioning, 1(08), p.0.

Wu, H., Marshall, A. and Yu, W., 2007, July. Path planning and following algorithms in an indoor navigation model for visually impaired. In Internet Monitoring and Protection, 2007. ICIMP 2007. Second International Conference on (pp. 38-38). IEEE.

Chumkamon, S., Tuvaphanthaphiphat, P. and Keeratiwintakorn, P., 2008, May. A blind navigation system using RFID for indoor environments. In Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008. ECTI-CON 2008. 5th International Conference on (Vol. 2, pp. 765-768). IEEE.

Ganz, A., Schafer, J., Gandhi, S., Puleo, E., Wilson, C. and Robertson, M., 2012. PERCEPT indoor navigation system for the blind and visually impaired: architecture and experimentation. International journal of telemedicine and applications, 2012, p.19.

Willis, S. and Helal, S., 2005, October. RFID information grid and wearable computing solution to the problem of wayfinding for the blind user in a campus environment. In IEEE International Symposium on Wearable Computers (ISWC 05).

Duroc, Y. and Tedjini, S., La RFID une Technologie Clé au Service de l’Humanité RFID a Key Technology for Humanity.

Kulyukin, V., Gharpure, C., Nicholson, J. and Osborne, G., 2006. Robot-assisted wayfinding for the visually impaired in structured indoor environments. Autonomous Robots, 21(1), pp.29-41.

Solanki, P. (2011) Passive vs active rfid tags. http://www.buzzle.com/articles/passive-vs-active-rfid-tags.html.

Wu, N.C., Nystrom, M.A., Lin, T.R. and Yu, H.C., 2006, July. Challenges to global RFID adoption. In Technology Management for the Global Future, 2006. PICMET 2006 (Vol. 2, pp. 618-623). IEEE.

Amemiya, T., Yamashita, J., Hirota, K. and Hirose, M., 2004, March. Virtual leading blocks for the deaf-blind: A real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space. In Virtual Reality, 2004. Proceedings. IEEE (pp. 165-287). IEEE.

 

Sáenz Correa, M.A., 2009. Sistema de posición y orientación móvil parapersonas ciegas en ambientes cerrados.

Liu, H., Darabi, H., Banerjee, P. and Liu, J., 2007. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), pp.1067-1080.

Ran, L., Helal, S. and Moore, S., 2004, March. Drishti: an integrated indoor/outdoor blind navigation system and service. In Pervasive Computing and Communications, 2004. PerCom 2004. Proceedings of the Second IEEE Annual Conference on(pp. 23-30). IEEE.

Priyantha, N.B., Chakraborty, A. and Balakrishnan, H., 2000, August. The cricket location-support system. In Proceedings of the 6th annual international conference on Mobile computing and networking (pp. 32-43). ACM.

Ran, L., Helal, S. and Moore, S., 2004, March. Drishti: an integrated indoor/outdoor blind navigation system and service. In Pervasive Computing and Communications, 2004. PerCom 2004. Proceedings of the Second IEEE Annual Conference on(pp. 23-30). IEEE.

Lorincz, K. and Welsh, M., 2004. «A Robust, Decentralized Approach to RF-Based Location Tracking,»Harvard University, Cambridge. MA, Tech. Rep. TR-19-04, Tech. Rep.

Huang, H., Gartner, G., Schmidt, M. and Li, Y., 2009, June. Smart environment for ubiquitous indoor navigation. In 2009 International Conference on New Trends in Information and Service Science (pp. 176-180). IEEE.

Zuo, Z., Liu, L., Zhang, L. and Fang, Y., 2018. Indoor Positioning Based on Bluetooth Low-Energy Beacons Adopting Graph Optimization. Sensors, 18(11), p.3736.

Chang, Y.J., Tsai, S.K. and Wang, T.Y., 2008, October. A context aware handheld wayfinding system for individuals with cognitive impairments. In Proceedings of the 10th international ACM SIGACCESS conference on Computers and accessibility (pp. 27-34). ACM.

Bessho, M., Kobayashi, S., Koshizuka, N. and Sakamura, K., 2008, March. A space-identifying ubiquitous infrastructure and its application for tour-guiding service. In Proceedings of the 2008 ACM symposium on Applied computing (pp. 1616-1621). ACM.

Zheng, P. and Ni, L., 2010. Smart phone and next generation mobile computing. Elsevier.

 

Zheng, P. and Ni, L., 2010. Smart phone and next generation mobile computing. Elsevier.

Baus, J., Krüger, A. and Wahlster, W., 2002, January. A resource-adaptive mobile navigation system. In Proceedings of the 7th international conference on Intelligent user interfaces (pp. 15-22). ACM.

Tsetsos, V., Anagnostopoulos, C., Kikiras, P. and Hadjiefthymiades, S., 2006. Semantically enriched navigation for indoor environments. International Journal of Web and Grid Services, 2(4), pp.453-478.

Golding, A.R. and Lesh, N., 1999, October. Indoor navigation using a diverse set of cheap, wearable sensors. In Wearable Computers, 1999. Digest of Papers. The Third International Symposium on (pp. 29-36). IEEE.

Hub, A., Diepstraten, J. and Ertl, T., 2004, October. Design and development of an indoor navigation and object identification system for the blind. In ACM Sigaccess Accessibility and Computing (No. 77-78, pp. 147-152). ACM.

Rajamäki, J., Viinikainen, P., Tuomisto, J., Sederholm, T. and Säämänen, M., 2007, February. LaureaPOP indoor navigation service for the visually impaired in a WLAN environment. In Proceedings of the 6th WSEAS International Conference on Electronics, Hardware, Wireless and Optical Communications(pp. 96-101). World Scientific and Engineering Academy and Society (WSEAS).

Retscher, G. and Thienelt, M., 2004. NAVIO–a navigation and guidance service for pedestrians. Positioning, 1(08), p.0.

Hightower, J. and Borriello, G., 2001. Location systems for ubiquitous computing. Computer, 34(8), pp.57-66.

Ivanov, R., 2010, June. Indoor navigation system for visually impaired. In Proceedings of the 11th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing on International Conference on Computer Systems and Technologies (pp. 143-149). ACM.

Benjamin, J.M. and Ali, N.A., 1974, March. An improved laser cane for the blind. In Quantitative Imagery in the Biomedical Sciences II (Vol. 40, pp. 101-105). International Society for Optics and Photonics.

Kay, L., 1974. A sonar aid to enhance spatial perception of the blind: engineering design and evaluation. Radio and Electronic Engineer, 44(11), pp.605-627.

Ito, K., Okamoto, M., Akita, J., Ono, T., Gyobu, I., Takagi, T., Hoshi, T. and Mishima, Y., 2005, April. CyARM: an alternative aid device for blind persons. In CHI’05 Extended Abstracts on Human Factors in Computing Systems (pp. 1483-1488). ACM.

 

Pressey, N., 1977. Mowat sensor. Focus, 11(3), pp.35-39.

Dodds, A.G., 1984. The Sonic Pathfinder: An Evaluation. Journal of Visual Impairment and Blindness, 78(5), pp.203-6.

Brabyn, J.A., 1982. New developments in mobility and orientation aids for the blind. IEEE Transactions on Biomedical Engineering, (4), pp.285-289.

Kay, L., 1984. Electronic aids for blind persons: an interdisciplinary subject. IEE Proceedings A-Physical Science, Measurement and Instrumentation, Management and Education-Reviews, 131(7), pp.559-576.

Xiao, F., Miao, Q., Xie, X., Sun, L. and Wang, R., 2018. Indoor Anti-Collision Alarm System Based on Wearable Internet of Things for Smart Healthcare. IEEE Communications Magazine, 56(4), pp.53-59.

Apostolopoulos, E., Fallah, N., Folmer, E. and Bekris, K.E., 2010. Feasibility of interactive localization and navigation of people with visual impairments. Proceedings of the 11th IEEE Intelligent Autonomous Systems (IAS-10), Ottawa, ON, Canada, 29, pp.22-32.

Koch, O. and Teller, S., 2008. A Self-calibrating. In ECCV Workshop on Computer Vision Applications for the Visually Impaired, Marseille, France.

Loomis, J.M., Golledge, R.G. and Klatzky, R.L., 1998. Navigation system for the blind: Auditory display modes and guidance. Presence, 7(2), pp.193-203.

Etter, R. and Specht, M., 2005. Melodious walkabout: Implicit navigation with contextualized personal audio contents (pp. 43-49). na.

Holland, S., Morse, D.R. and Gedenryd, H., 2002. AudioGPS: Spatial audio navigation with a minimal attention interface. Personal and Ubiquitous computing, 6(4), pp.253-259.

Huang, B. and Liu, N., 2004. Mobile navigation guide for the visually disabled. Transportation Research Record: Journal of the Transportation Research Board, (1885), pp.28-34.

Nassih, M., Cherradi, I., Maghous, Y., Ouriaghli, B. and Salih-Alj, Y., 2012, September. Obstacles recognition system for the blind people using RFID. In Next Generation Mobile Applications, Services and Technologies (NGMAST), 2012 6th International Conference on (pp. 60-63). IEEE.

 

Amemiya, T., Yamashita, J., Hirota, K. and Hirose, M., 2004, March. Virtual leading blocks for the deaf-blind: A real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space. In Virtual Reality, 2004. Proceedings. IEEE (pp. 165-287). IEEE.

Heuten, W., Henze, N., Boll, S. and Pielot, M., 2008, October. Tactile wayfinder: a non-visual support system for wayfinding. In Proceedings of the 5th Nordic conference on Human-computer interaction: building bridges (pp. 172-181). ACM.

Willis, S. and Helal, S., 2005, October. RFID information grid and wearable computing solution to the problem of wayfinding for the blind user in a campus environment. In IEEE International Symposium on Wearable Computers (ISWC 05).

Ertan, S., Lee, C., Willets, A., Tan, H. and Pentland, A., 1998, October. A wearable haptic navigation guidance system. In Wearable Computers, 1998. Digest of Papers. Second International Symposium on (pp. 164-165). IEEE.

Petrie, H., Johnson, V., Strothotte, T., Raab, A., Fritz, S. and Michel, R., 1996. MoBIC: Designing a travel aid for blind and elderly people. The Journal of Navigation, 49(1), pp.45-52.

Nakamura, K., Aono, Y. and Tadokoro, Y., 1997. A walking navigation system for the blind. Systems and computers in Japan, 28(13), pp.36-45.

Arikawa, M., Konomi, S.I. and Ohnishi, K., 2007. NAVITIME: Supporting pedestrian navigation in the real world. IEEE Pervasive Computing, 6(3).

Mekhalfi, M.L., Melgani, F., Zeggada, A., De Natale, F.G., Salem, M.A.M. and Khamis, A., 2016. Recovering the sight to blind people in indoor environments with smart technologies. Expert Systems with Applications, 46, pp.129-138.

Tandon, K., Pande, T., Adil, M., Dubey, G. and Kumar, A., 2015. A blind navigation system using rfid for indoor environments. International Journal of Computer Systems, 2(4), pp.115-118.

Ding, B., Yuan, H., Jiang, L. and Zang, X., 2007, September. The research on blind navigation system based on RFID. In Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007. International Conference on (pp. 2058-2061). IEEE.

 

PENCYT 2015-2019 (27 de marzo 2017). Política Nacional de Ciencia, Tecnología e Innovación de Panamá y Plan Nacional 2015-2019. SENACYT.

Seyed Ali Cheraghi, Vinod Namboodiri, Kaushik Sinha, IBeaconMap: Automated Indoor Space Representation for Beacon-Based Wayfinding, Disponible en: https://arxiv.org/abs/1802.05735

Wayfindr, Understanding Audio Wayfinding and Audio-Based Navigation. Disponible en: http://www.wayfindr.net/wp-content/uploads/2018/08/Understanding-Audio-Wayfinding-and-Audio-Based-Navigation.pdf

ITU-T, Recommendation ITU-T F.921, Disponible en: https://www.itu.int/itu-t/recommendations/rec.aspx?rec=13185

G.Renuka, M.Yesodha, S.Perumal,K.Dharanidahara. Design of BLE Based Location Tracking Using Beacon. Disponible en: https://acadpubl.eu/hub/2018-119-12/articles/7/1587.pdf

Agustinus Noertjahyana; Ignatius Alex Wijayanto; Justinus Andjarwirawan (18 de enero 2018). Development of Mobile Indoor Positioning System Application Using android and Bluetooth Low Energy with Trilateration Method, Disponible en: https://ieeexplore.ieee.org/document/8262565/figures#figures

Adam Satan, Bluetooth-based Indoor Navegation Mobile System (2018). Disponible en: https://ieeexplore.ieee.org/document/8325586

Mauricio Arias C., Anderson Arango, Stiven Agudelo, Dany Urrego, Jakeline Serrano. (2015). Interfaz para navegación autónoma de discapacitados visuales en salas de exposiciones museográficas, Dispnible en: https://www.researchgate.net/publication/293489896_Interfaz_para_navegacion_autonoma_de_discapacitados_visuales_en_salas_de_exposiciones_museograficas

Prachi Singh, Manav Jain, Lakshya Rawal. (2018). iBeacon-based indoor positioning systems for airports. Disponible en: https://www.ijcaonline.org/archives/volume179/number43/singh-2018-ijca-917058.pdf

Dragan Ahmetovic, Cole Gleason, Kris M. Kitani. NavGoc: turn-by-turn smartphone navigation assistant for people with visual impairments or blindness.  Disponible en: https://www.colegleason.com/static/papers/a9-ahmetovic.pdf

Manoj.V. Bramhe, Jeetendra Gan, Nayan Ghodpage, Ankit Nawale, Gurendra Bahe. (2017). Indoor Positioning System using Magnetic Positioning and BLE beacons, International Research Journal of Engineering and Technology (IRJET), Volumen: 04 Issue: 03. Disponible en: https://www.irjet.net/archives/V4/i3/IRJET-V4I3254.pdf

 

Jose Rivera-Rubio, Kai Arulkumaran, Hemang Rishi, Ioannis Alexiou, Anil A. Bharath. An assistive haptic interface for appearance-bassed indoor navigation. Disponible en: https://www.sciencedirect.com/science/article/pii/S1077314216000680

José Cecílio, Karen Duarte, Pedro Furtado. BlindeDroid: An Information Tracking System for Real-time Guiding of Blind People. Disponible en: https://www.sciencedirect.com/science/article/pii/S187705091500839X

Lenin Giovann, Paucar Espinosa. Gafas y bastón inteligente para una persona invidente. Disponible en: https://docplayer.es/91230007-Universidad-tecnologica-israel-trabajo-de-titulacion-en-opcion-al-grado-de-ingeniero-en-electronica-digital-y-telecomunicaciones.html

Israel Rosas. RunaTech, el traje para invidentes desarrollado en Ecuador. Publicado por: FayerWayer, Articulo disponible en: https://www.fayerwayer.com/2014/05/runatech-el-traje-para-invidentes-desarrollado-en-ecuador/

Lliteras, A. B., Challiol, C., Mostaccio. C. A., Gordillo, S. E. (2011). Representaciones enriquecidas para la navegación indoor-outdoor en aplicaciones móviles. En  XVII Congreso Argentino de Ciencias de la Computación. Recuperado de: http://hdl.handle.net/10915/18743

Mier Naranjo J. A. (2018). Análisis de las tecnologías utilizadas en sistemas de posicionamiento en interiores. Bachelor Thesis. Facultad de Ingeniería y Ciencias Aplicadas. UDLA. Quito. Recuperado de: http://dspace.udla.edu.ec/handle/33000/10253

Muñoz Sevilla, J. A. (2012). Las TIC y la discapacidad visual. Centro de Investigación Desarrollo y Aplicación Tiflotécnica. Recuperado de: https://ruc.udc.es/dspace/bitstream/handle/2183/13227/CC127_art_18.pdf?sequence=1&isAllowed=y

González Gómez, A. A., Pallares M, L. E., Escobar, R. F. (2016). Implementación de un dispositivo basado en Bluetooth y RFID para guía y posicionamiento en interiores de personas con incapacidad visual usando una APP en su dispositivo móvil. Universidad Distrital Francisco José de Caldas. Recuperado de: https://doi.org/10.14483/2248762X.11996

 

A. Šljivo, D. Kerkhove, L. Tian, J. Famaey, A. Munteanu, I. Moerman, J. Hoebeke, and E. De Poorter. Performance Evaluation of IEEE 802.11ah Networks With High-Throughput Bidirectional Traffic. Sensors (Basel)., vol. 18, no. 2, Jan. 2018.

S. Kumar, S. Gil, D. Katabi, and D. Rus. Accurate indoor localization with zero start-up cost. In Proceedings of the 20th annual international conference on Mobile computing and networking – MobiCom ’14, 2014, pp. 483–494.

M. Kotaru, K. Joshi, D. Bharadia, and S. Katti. “SpotFi”. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication – SIGCOMM ’15, 2015, pp. 269–282.

J. Xiao, K. Wu, Y. Yi, L. Wang, and L. M. Ni. Pilot: Passive Device-Free Indoor Localization Using Channel State Information. In 2013 IEEE 33rd International Conference on Distributed Computing Systems, 2013, pp. 236–245.

A. S. Paul and E. A. Wan. RSSI-Based Indoor Localization and Tracking Using Sigma-Point Kalman Smoothers. IEEE J. Sel. Top. Signal Process., vol. 3, no. 5, pp. 860–873, Oct. 2009.

P. Spachos, I. Papapanagiotou, and K. N. Plataniotis. Microlocation for Smart Buildings in the Era of the Internet of Things: A Survey of Technologies, Techniques, and Approaches. IEEE Signal Process. Mag., vol. 35, no. 5, pp. 140–152, Sep. 2018.

A. Satan. Bluetooth-based indoor navigation mobile system. In 2018 19th International Carpathian Control Conference (ICCC), 2018, pp. 332–337.
iBeacon, “https://developer.apple.com/ibeacon/.”

N. Ortega-Sánchez, A. R. Jiménez y F. Seco. Información aumentada con móvil en museos mediante localización con BLE. XXXIX Jornadas de Automática, Badajoz, 5-7 septiembre 2018, Libro de Actas pp. 283-290.

F. Seco and A. R. Jiménez. Smartphone-based cooperative indoor localization with RFID technology, Sensors, vol. 18, article no. 266 (2018).

[Webpage]. Personal localization in indoor and GPS-denied environments. https://lopsi.weebly.com/publications.html